Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex.

نویسندگان

  • Takeshi Hashimoto
  • Rajaa Hussien
  • George A Brooks
چکیده

Results of previous studies suggested a role of mitochondria in intracellular and cell-cell lactate shuttles. Therefore, by using a rat-derived L6 skeletal muscle cell line and confocal laser-scanning microscopy (CLSM), we examined the cellular locations of mitochondria, lactate dehydrogenase (LDH), the lactate-pyruvate transporter MCT1, and CD147, a purported chaperone protein for MCT1. CLSM showed that LDH, MCT1, and CD147 are colocalized with the mitochondrial reticulum. Western blots showed that cytochrome oxidase (COX), NADH dehydrogenase, LDH, MCT1, and CD147 are abundant in mitochondrial fractions of L6 cells. Interactions among COX, MCT1, and CD147 in mitochondria were confirmed by immunoblotting after immunoprecipitation. These findings support the presence of a mitochondrial lactate oxidation complex associated with the COX end of the electron transport chain that might explain the oxidative catabolism of lactate and, hence, mechanism of the intracellular lactate shuttle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for the Mitochondrial Lactate Oxidation Complex in Rat Neurons: Demonstration of an Essential Component of Brain Lactate Shuttles

To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS) in neurons, we attempted to determine if monocarboxylate (e.g. lactate) transporter isoforms (MCT1 and -2) and lactate dehydrogenase (LDH) are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitoch...

متن کامل

MCT1 confirmed in rat striated muscle mitochondria.

We sought to test the hypothesis that monocarboxylate transporter isoform 1 (MCT1) is the inner mitochondrial membrane lactate/pyruvate transporter, and, as such, contributes to functioning of the intracellular lactate shuttle. However, presence of a mammalian mitochondrially localized MCT1 (mMCT1) has been contested. We sought to confirm by Western blotting the mitochondrial localization of MC...

متن کامل

Lactate Up-Regulates the Expression of Lactate Oxidation Complex-Related Genes in Left Ventricular Cardiac Tissue of Rats

BACKGROUND Besides its role as a fuel source in intermediary metabolism, lactate has been considered a signaling molecule modulating lactate-sensitive genes involved in the regulation of skeletal muscle metabolism. Even though the flux of lactate is significantly high in the heart, its role on regulation of cardiac genes regulating lactate oxidation has not been clarified yet. We tested the hyp...

متن کامل

Monocarboxylic acid transport.

Monocarboxylates such as lactate, pyruvate, and the ketone bodies play major roles in metabolism and must be transported across both the plasma membrane and mitochondrial inner membrane. A family of five proton-linked MonoCarboxylate Transporters (MCTs) is involved in the former and the mitochondrial pyruvate carrier (MPC) mediates the latter. In the intestine and kidney, two Sodium-coupled Mon...

متن کامل

Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1.

To evaluate the potential role of monocarboxylate transporter-1 (MCT1) in tissue lactate oxidation, isolated rat subsarcolemmal and interfibrillar cardiac and skeletal muscle mitochondria were probed with an antibody to MCT1. Western blots indicated presence of MCT1 in sarcolemmal membranes and in subsarcolemmal and interfibrillar mitochondria. Minimal cross-contamination of mitochondria by cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 290 6  شماره 

صفحات  -

تاریخ انتشار 2006